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ABSTRACT 
The two-dimensional steady boundary layer equations, for simultaneous heat and fluid flow within ducts , 
are handled through the generalized integral transform technique. The momentum and energy equations 
are integral transformed by eliminating the transversal coordinate and reducing the PDE ' s into an infinite 
system of coupled non-linear ordinary differential equations for the transformed potentials. An adaptively 
truncated version of this O D E system is numerically handled through well known initial value problem 
solvers, with automatic precision control procedures. The explicit inversion formulae are then recalled to 
provide analytic expressions for velocity and temperature fields and related quantities of practical interest. 
Typical examples are presented in order to illustrate the hybrid numerical analytical approach and its 
convergence behaviour. 
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NOMENCLATURE 
N, M truncation orders of systems 

(12a,b), respectively, 
Ni, Mi normalization integrals, (8c,d), 
Nu(Z) local Nusselt number (= h4rw/k), 
Nuav(Z) average Nusselt number 

(= h4rw/k), 
p, p* pressure field, dimensional and 

dimensionless 
Pe Peclet number ( = Re·Pr), 
Pr Prandtl number, 
r, R transversal coordinate, dimensional 

and dimensionless, 
rw half-distance between paral lel-

plates, 
Re Reynolds number , 
T(r, z) temperature distribution, 
T0 inlet temperature, 
Tw wall temperature, 
u, U longitudinal velocity component , 

dimensional and dimensionless, 
u0 inlet velocity, 
Ux(R) separated velocity distribution (3a) 
Um average fluid velocity, 
v, V transversal velocity component , 

dimensional and dimensionless, 

X+ dimensionless axial coordinate, as 
defined in (19), 

z, Z axial coordinate, dimensional and 
dimensionless, 

Greek 
x thermal diffusivity, 
ε relative errors in adaptive pro­

cedure, (18), 
Θ(R, Z) dimensionless temperature distri-

bution, 
Θav(Z) fluid bulk temperature, 
٪i, μi eigenvalues of problems (7) and (6), 

respectively, 
Γi(R), i(R) eigenfunctions of problems (7) and 

(6), respectively, 
v kinematic viscosity, 

Subscripts and superscripts 
— integral transformed quantities, 
i, j , k order from eigenvalues or eigen-

functions. 
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INTRODUCTION 

The thermohydraulic design of heat exchange equipment, in various industrial applications, has 
taken advantage of the progress on the computational and mathematical capabilities for 
simulations of non-isothermal internal flows1. Forced convection problems of incompressible 
single phase flows are frequently encountered within this context, which are commonly modelled 
through the boundary layer equations in two or three dimensions, either in a laminar or turbulent 
regimen, depending on the specific situation. Different numerical approaches are available for 
the approximate solution of the boundary layer equations in simultaneous heat and fluid flow 
problems2, based on variations of the well known finite difference and finite element methods. 
A number of previous contributions utilized such approaches in the numerical treatment of the 
classical simultaneously developing flow problem, inside regularly shaped channels like circular 
tubes and parallel plates1,3. None of these schemes provide an automatic global error control 
to within user prescribed accuracy, and can become prohibitively computer intensive for 
increasing precision requirements. Also, a true benchmark solution for this class of problem is 
not readily available, and numerical codes are generally validated through analytic fully developed 
region solutions or rough comparisons with previously reported numerical results for alternative 
discrete approaches. 

Within the last few years, a hybrid numerical-analytical approach has been advanced for the 
solution of different classes of linear and non-linear diffusion and convection-diffusion problems, 
as compiled in Reference 4, denoted the generalized integral transform technique. Most 
recent contributions are aimed at the accurate solution of non-linear heat and fluid flow 
problems5-15, which include problems with variable properties, moving boundaries, irregular 
geometries, non-linear source terms, non-linear boundary conditions, Navier-Stokes equations, 
and boundary layer equations as well. 

Due to its hybrid nature, this approach offers global error control to within user prescribed 
accuracy and quite efficient computational performance for a wide variety of problems. 

In a previous contribution16, the problem of simultaneous heat and fluid flow inside channels 
was analytically handled through the integral transform approach, by applying a linearization 
procedure to the velocity problem and yielding a linear non-separable energy equation. The 
approximate analytic expressions were then compared against finite difference results for the 
complete non-linear problem, offering a validation of this extended Graetz-type solution. The 
problem of hydrodynamic development inside channels, governed by the full non-linear 
momentum equation in boundary layer formulation, was again treated15 by the generalized 
integral transform technique, providing a hybrid numerical-analytical solution to this classical 
problem, including wall injection or suction. The convergence behaviour of the eigenfunction 
expansions was illustrated and previously reported numerical solutions were validated. The 
present work progresses further into the analysis of the boundary layer equations for simultaneous 
heat and fluid flow, through the integral transform method. The momentum and energy equations 
are integral transformed concurrently, based on specific auxiliary eigenvalue problems. Also, 
the approach in Reference 15 is refined in terms of computational performance, through explicit 
separation of fully developed solutions, and improved implementation of the adaptive 
procedure4'8 for automatic reduction of the truncated ODE system order and control of the 
global relative error. Sets of benchmark results for this classical test problem, under prescribed 
uniform wall temperature condition, are then provided in both graphical and tabular form. 

ANALYSIS 

Hydrodynamically and thermally developing incompressible laminar flow of a Newtonian fluid 
between parallel-plates is considered, subjected to an uniform wall temperature and uniform 
inlet conditions, for both velocity and temperature fields. Physical properties are assumed 



SIMULTANEOUS HEAT AND FLUID FLOW PROBLEMS 227 

constant and viscous dissipation and free convection effects are considered negligible, although 
not a limitation for application of the present approach. Within the range of validity for the 
boundary layer hypothesis, the problem formulation in dimensionless form is written as: 

Continuity: 

0 < R < 1, Z > 0 (1a) 

Z-momentum equation: 

0 < R < 1, Z > 0 (1b) 

Energy equation: 

0 < R < 1, Z > 0 (1c) 

with inlet and boundary conditions given, respectively, by: 
U ( R , 0 ) = 1 (1d) 

V(R,0) = 0 (1e) 

θ(R,0) = 1 (1f) 

= 0 (1g) 

V(0.Z) = 0 (1h) 

= 0 (1i) 

U ( 1 , Z) = 0 (1j) 
V(1,Z) = 0 (1k) 

θ(1,Z) = 0 (1l) 
where various dimensionless groups are defined as: 
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For improved computational performance in the solution of the velocity field, with respect to the 
direct procedure15, the fully developed flow situation is separated from the complete potential, 
in the form: 

U(R,Z) = U*(R, Z) + U∞(R) (3a) 
where 

U∞(R) = 3 ⁄ 2 · ( 1 -R 2 ) (3b) 
This is a commonly used device in the integral transform approach4,8, equivalent to the 

separation of the steady-state solution in a transient problem, which acts by filtering the equation 
source terms responsible for the slower convergence rates in non-homogeneous problems. For 
the temperature problem, in the present situation, fully developed conditions result in trivial 
solution. After substitution of the splitting-up scheme, (3a), the problem formulation is rewritten 
as: 

and the inlet and boundary conditions for the longitudinal velocity component become: 
U*(R,0)= 1 - U∞(R) (4d) 

= 0 (4e) 

U*(1, Z) = 0 (4f) 
while the other conditions remain unaltered. 

The next step in the solution of (4) is the elimination of the dependent variables, V(R, Z) and 
p*(Z). First, the continuity equation (4a) is integrated to yield: 

(5a) 

while the momentum equation is integrated over the channel cross-section to provide an 
expression for the pressure gradient: 

(5b) 

Equations (5) relate the transversal velocity and pressure gradient to the longitudinal velocity 
field, as required for completion of the integral transformation process. 
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Following the formalism in the generalized integral transform technique, a pair of auxiliary 
eigenvalue problems is selected to construct the eigenfunctions expansions, namely, for the 
velocity problem: 

and for the temperature problem: 

Other choices of auxiliary problems were analysed in Reference 16. For the present situation 
of prescribed temperature boundary condition, problems (6) and (7) yield identical solutions, 
given by: 

and the normalization integrals: 

Problems (6), (7) allow definition of the following integral transform pairs, for the velocity field: 

transform (9a) 

inversion (9b) 

and for the temperature field: 

transform (10a) 

inversion (10b) 
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In terms of the transformed potentials defined by (9a) and (10a), the transversal velocity and 
pressure gradient are rewritten as: 

where: 

Equations (4b) and (4c) are now integral transformed through the operators dR and 

dR, respectively, to yield the transformed ordinary differential equations: 

where the various coefficients matrices are given by: 
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and the various integrals are computed from: 

The inlet conditions, equations (4d,lf), are similarly integral transformed to provide: 
(14a) 
(14b) 

where, 

(14c) 

All the integrals above are readily evaluated by analytic means. For computational purposes, 
the infinite systems defined by (12a,b) are truncated to sufficiently large order so as to satisfy 
the user requested accuracy target. In normal form, the truncated system to be numerically 
handled is written as: 
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with inlet conditions: 
*(0) = f* (15c) 

= f (15d) 
where, 

(15e) 
(15f) 

Once the transformed potentials * and have been numerically evaluated at any Z of 
interest according to the computational procedure described in what follows, the inversion 
formulae are recalled to construct the original potentials, in the form: 

where N and M are the truncation orders for the velocity and temperature eigenfunction 
expansions, respectively. 

Quantities of practical interest can then be analytically evaluated from their usual definitions, 
such as: 

Bulk temperature 

Local Nusselt number 

where the temperature gradient at the wall is evaluated from the heat balance equation, for 
improved convergence behaviour, in the form: 

Average Nusselt number 

COMPUTATIONAL PROCEDURE 

A simple algorithm is constructed, including the attractive feature of automatically controlling 
the global error in the final solution for the potentials, at any selected positions (R, Z). To achieve 
this goal, the semi-analytic nature of this approach is employed in conjunction with 
well-established subroutines libraries, with thoroughly tested accuracy control schemes. 

The numerical integration of system (15) is performed, for instance, through subroutine 
DIVPAG of the IMSL library17 in Gear's method mode, since these ODE systems are likely to 
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be stiff, especially for the higher truncation orders. Since the numerical integration of the ODE 
systems is accomplished within user prescribed accuracy, one is left with the need of reaching 
convergence in the eigenfunction expansions and automatically controlling the truncation orders, 
N and M, for a certain number of fully converged digits requested in the final solution, at those 
positions of interest. The analytic nature of the inversion formulae allows for a direct testing 
procedure at each specified position where a solution is required, and the truncation orders, N 
and M, can be gradually varied to fit the global error requirements. The simple formulae for 
checking the accuracy is given by: 

and, 

where N* and M* are made smaller than N or M until ε still fits the user requested precision; 
at this limit, either N or M are changed to assume the values of N* or M*, respectively. The 
truncation orders can also be increased and numerical integration at the last Z interval repeated, 
if the current values are not sufficiently large to reach the required accuracy. 

Therefore, this adaptive scheme of controlling the ODE system sizes, automatically reduces 
computational effort and provides a global error control. 

RESULTS AND DISCUSSION 

First, complementing the work of Reference 15, the adaptive procedure is validated and the 
convergence behaviour illustrated for the velocity problem under separation of the fully developed 
solution, according to (3a). Table 1 presents results of the duct centreline velocity along the 
dimensionless axial coordinate, for different values of the truncation order in the velocity field 
expansion, from N = 5 up to 30. Also shown are the final results achieved through implementation 
of the adaptive procedure, and the automatically controlled values of the system size, N. Clearly, 
as expected, the adaptive scheme results reproduce the fully converged solutions to within the 
user prescribed accuracy requirements, in this case a relative error target of 10 -5. 

The results from the purely numerical approach1 are also validated, demonstrating a very 
good agreement with the error controlled results of the present approach. It should be noted 
that the dimensionless axial coordinate was redefined according to the expression employed1 

for comparison purposes: 

or, 
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Table 1 Convergence analysis of duct centerline velocity and validation of adaptive procedure 

X + 

0.375 
0.5 
0.75 
1.0 
1.5 
2.0 
2.5 
5.0 

12.5 

N 

5 

1.1101 
1.1271 
1.1609 
1.1904 
1.2380 
1.2764 
1.3092 
1.4148 
1.4921 

10 

1.1190 
1.1386 
1.1710 
1.1979 
1.2423 
1.2690 
1.3108 
1.4139 
1.4917 

15 

1.1221 
1.1413 
1.1730 
1.1994 
1.2432 
1.2797 
1.3110 
1.4133 
1.4914 

20 

1.1232 
1.1422 
1.1737 
1.1999 
1.2435 
1.2797 
1.3108 
1.4129 
1.4913 

25 

1.1239 
1.1427 
1.1740 
1.2001 
1.2435 
1.2796 
1.3107 
1.4126 
1.4913 

30 

1.1242 
1.1430 
1.1742 
1.2002 
1.2435 
1.2796 
1.3107 
1.4126 
1.4913 

Adapt. 

1.1242 
1.1430 
1.1742 
1.2002 
1.2435 
1.2796 
1.3107 
1.4126 
1.4913 

N 

30 
30 
30 
29 
28 
28 
28 
26 
14 

Ref. 1 

1.124 
1.144 
1.177 
1.203 
1.246 
1.282 
1.312 
1.411 
1.490 

Tolerance for ODE's solver: 10 - 6 

Tolerance for adaptive scheme: 10 - 5 

Figure 1 illustrates the automatic reduction on the ODE's systems sizes, for both the velocity 
and temperature fields, achieved through implementation of the adaptive procedure along the 
integration path in X + . The temperature field is still more rapidly converging than the velocity 
expansion, even after separation of the fully developed flow solution. The computation 
represented in Figure 1 was observed to be around 23 times faster than the numerical integration 
of the ODE systems with a fixed number of equations, i.e., N = M = 40, which confirms the 
marked advantages in the implementation of the adaptive procedure. 

Table 2 brings a set of reference results for the fluid bulk temperature, with different values 
of Pr, along the duct axial coordinate. The exact fully converged results are then utilized to 
inspect the relative accuracy of the approximate analytic-type solutions16, and such comparison, 
not possible before due to the inexistence of a truly benchmark solution, shows that the 
approximate solution is reasonably accurate, offering two to three digits in agreement along 
most of the entry region. 
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Table 2 Benchmark results for the fluid bulk temperature and validation of the approximate analytical solution in 
Reference 16 

٪+ 

0.0000434 
0.0000868 
0.000260 
0.000434 
0.000608 
0.000955 
0.00130 
0.00174 
0.00260 
0.00347 
0.00434 
0.00608 
0.00868 
0.0148 
0.0234 
0.0321 
0.0434 
0.0651 
0.0942 

Pr = 0.72 

Exact 

0.98198 
0.97378 
0.95304 
0.93836 
0.92622 
0.90600 
0.88893 
0.86982 
0.83764 
0.80939 
0.78391 
0.73843 
0.67910 
0.56256 
0.43346 
0.33307 
0.23657 
0.12266 
0.05082 

Approx.16 

— 
— 
0.94855 
0.93306 
0.92036 
0.89940 
0.88190 
0.86244 
0.82999 
0.80172 
0.77639 
0.73138 
0.67291 
0.55812 
0.43060 
0.33124 
0.23557 
0.12247 
0.05089 

٪+ 

0.0000125 
0.0000188 
0.0000250 
0.0000500 
0.0000750 
0.000100 
0.000125 
0.000188 
0.000250 
0.000500 
0.000750 
0.00106 
0.00200 
0.00313 
0.00625 
0.00938 
0.0125 
0.0250 
0.0406 

Pr = 10.0 

Exact 

0.99445 
0.99276 
0.99133 
0.98679 
0.98321 
0.98014 
0.97734 
0.97133 
0.96617 
0.94922 
0.93537 
0.92036 
0.88216 
0.84374 
0.75715 
0.68520 
0.62221 
0.43478 
0.26625 

Approx.16 

— 
— 
— 
— 
0.9842 
0.9821 
0.9774 
0.9733 
0.9590 
0.9464 
0.9317 
0.8924 
0.8526 
0.7644 
0.6918 
0.6284 
0.4305 
0.2689 

Figures 2a and 2b present reference results for the local Nusselt number distributions, with 
different Prandtl numbers, respectively, Pr = 0.72 and 10. Also plotted are some results from 
the approximate analytical solution developed16, based on a linearization of the velocity problem 
and application of the generalized integral transform technique to the resulting linear temperature 
problem. The agreement is quite good, except in the region close to the duct inlet, when the 
approximation introduced on the velocity field affects more significantly the related temperature 
distributions and, consequently, the Nusselt number. 
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Figures 3a and 3b show a set of benchmark results for the average Nusselt numbers in terms 
of the duct dimensionless length, X+, for Pr = 0.72 and 10, respectively. In addition, the curves 
from the purely numerical solution in Reference 1 and the approximate analytical solution in 
Reference 16 are also plotted for the same values of Pr. The analytical solution demonstrates16 

the same trends previously discussed, while the purely numerical solutions1 become less accurate 
as the inlet is approached, although not as markedly as the analytic-type solution. 

The confidence built in the present application of the integral transform approach, brings the 
interest in considering increasingly complex problems, including the analysis of variable 
properties effects and different geometries. 
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